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There are more things in heaven and earth, Horatio, 

than are dreamt of in your philosophy.

Hamlet (Act 1, Scene 5)

This popular quote from Hamlet might be recast for the field of communication as “There are more things in science 

than are dreamt of in our philosophies”.  This article will review several new and strange ideas from complexity sci-

ence about how the natural world is organized and how we can go about researching it. These strange ideas, (e.g., 

deterministic, but unpredictable systems) resonate with many communication phenomena that our field has tradition-

ally had difficulty studying.  By reviewing these areas, we hope to add a new, compelling and useful way to think 

about science that goes beyond the current dominant philosophy of science employed in communication.  Though 

the concepts reviewed here are difficult and often appear at odds with the dominant paradigm; they are not.  Instead, 

this approach will facilitate research on problems of communication process and interaction that the dominant para-

digm has struggled to study.  Specifically, this article explores the question of process research in communication by 

reviewing three major paradigms of science and then delving more deeply into the most recent: complexity science.  

The article provides a broad overview of many of the major ideas in complexity science and how these ideas can be 

used to study many of the most difficult questions in communication science. It concludes with suggestions going 

forward for incorporating complexity science into communication.
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Highlights

•	 There is a third paradigm of science, commonly referred to as complexity science.

•	 It provides analytic methods that will facilitate the study dynamic and interactive communication processes.

•	 Though the complexity science paradigm is not well-known to communication scientists, it has facilitated important 

discoveries in most other branches of science.

•	 The complexity paradigm focuses on how simple rules (e.g., basic laws of evolution) generate highly complex-appearing 

systems (e.g., all life on Earth).

•	 The characteristics of communicative interaction processes are a strong fit with criteria for complex systems.

•	 Communicative interaction can be modeled and tested using a computer simulation.

•	 Complexity will require researchers to integrate existing knowledge into a very different paradigm, slowing 

broad-based adoption in the field.
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had great difficulty studying it as such (Miller, 1977; 

Poole, 2007; Watt & VanLear, 1996).  As early as 1960, 

Berlo wrote, in The Process of Communication, that in order 

to study communication, “we must arrest the dynamic of 

the process, in the same way that we arrest motion when 

we take a still picture with a camera” (p. 25).  This raises 

the question: what is lost from a dynamic phenomenon 

when we change it from what it is to a snapshot of what 

it is?  For example, can we understand how a bird f lies by 

looking at its still body?  Well, yes and no.  There is 

clearly much to learn about f light from bird physiology 

(e.g., nearly weightless hollow bones, optimal wing to 

body-size ratio, airfoil shape).  There also remains a great 

deal left to know related to the rhythms of muscle move-

ment, the positioning of feathers, and the bird’s respons-

es to varying air dynamics.  Importantly, the methods 

used to understand static physiology (e.g., dissection) will 

not be particularly useful for understanding the dynamic 

process of f lying.  We could say that knowledge of static 

bird is necessary, but not sufficient, for understanding 

f light.

The current state of communication research is anal-

ogous to studying static birds. During the last four decades, 

our field has produced tremendous research on static 

communication, but little on the dynamic interactive 

The Complexity Paradigm for Studying 
Human Communication

You do not need a Ph.D. in communication to know 

that human communication is a complex interactive pro-

cess made up of simultaneous verbal and nonverbal mes-

sages.  However, the interactive process of communication 

has long vexed communication researchers and eluded 

scientific study (Berger, 2010; Burleson, 1992; Lang, 2013; 

Lang & Ewoldsen, 2010; Poole, 2007; Salem, 2012).  Are 

there clear and predictable patterns to the interactive 

process by which individuals exchange meaning and in-

f luence one another (Miller, 1977)?  Why does the com-

munication f low effortlessly sometimes but not at other 

times, despite similar circumstances?  How does the in-

teractive process of communication lead to distinctive 

group decisions or strong group entitativity?  Can we 

capture the interactive dynamic of communication in 

such a way as to gain understanding and control over 

persuasion or negotiation?  What is the process by which 

communication creates the emergence of phenomena like 

Internet memes, f lash mobs, or international fan groups 

for television or film franchises?

Though our field has long held that communication 

is a process (Berlo, 1960; Johnson & Klare, 1961), we have 
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As a result, scientific explanation is the search for causal 

laws/relationships among variables:  “Causation is liter-

ally the driving force of variance theories in that causes 

are assumed to produce the effects in a regular manner, 

and knowing the values of the causal variables is sufficient 

to know what effects will occur.” (Poole, 2007, p. 183)   

Causality is held to have three components, following 

Cook & Campbell’s (1979) formulation: covariation, time 

order, and elimination of alternative explanations for the 

cause-effect relationship.  To accomplish the task of find-

ing causal laws, scholars attempt to specify a set of rela-

tionships among predictor variables that explain the 

maximum amount of variance in the outcome variable.  

Relationships among variables are conceived in terms of 

covariation, where the relationship is usually algebra-

ically linear.  Statistics are used to determine the extent 

to which the observed relationship is consistent with the 

linear prediction (e.g., effect size) by assessing the amount 

of variance in the dependent variable that results from 

variance in the independent variable.  Time order is typ-

ically handled methodologically by experimental ma-

nipulation or some type of quasi-experimental design 

(Cook & Campbell, 1979; Davis, 1985).  Possible alterna-

tive explanations can be ruled out methodologically or 

through statistical analysis.  Empirically, these theorized 

relationships rarely explain 100% of the variance and are 

instead considered probabilistic rather than strictly de-

terministic.

In the vast majority of cases, the research model is 

assumed to be linear, even if the individual terms (i.e., 

variable and coefficient) are nonlinear.  Linear systems 

are those that meet the criteria for superposition: scaling 

and additivity.  Scaling refers to systems in which the 

change in the dependent variable is proportional to the 

change in the independent variable.  In other words, the 

relationship between independent and dependent variables 

is a fixed ratio (e.g., a 1:3 ratio in which every increase of 

one unit in the IV results in an increase of three units in 

the DV).  In contrast, in nonlinear systems, a change of 

one unit in the IV might result in enormous qualitative 

change in the DV (Campbell, 1987).  For example, a 

simple nonlinear function such as y = x2 results in the 

following series of ordered pairs in which the DV is in-

process of communication.  Just as the methods for study-

ing static bird physiology had to give way to the methods 

of f luid dynamics to more fully understand the process 

of f light, the methods we use to study communicative 

interaction need to be more appropriate to interaction 

dynamics.  In this article, we review a number of episte-

mological ideas currently being used in other sciences to 

understand similarly complex dynamic processes.  Just 

as in the Hamlet quote, this new epistemology will require 

new imagination on the part of quantitative and qualita-

tive communication researchers. We will review the cur-

rent dominant paradigm in communication science; con-

trast and introduce the domain, concepts, and methods 

of complexity science; and give suggestions for topics and 

methods of studying the dynamics of communication 

from the perspective of this new paradigm. It is hoped 

that this article will stimulate new thinking and investiga-

tion of how complexity research can enhance the study 

of human communication processes. 

The Dominant Paradigm 
in Communication Science

Communication science Ph.D. students are taught that 

science consists of the search for laws of communication 

represented as relationships among a small number of 

variables (e.g., Berger, Roloff & Ewoldsen, 2009; Chaffee, 

& Berger 1987; Shoemaker, Tankard & Lasorsa, 2004) 

and presented as static snapshots. For example, the pop-

ular theory of reasoned action states that the relationship 

between cognitions and behavioral intention are an ad-

ditive function of attitudes and social norms stated as: 

BI = A + SN (Ajzen & Fishbein, 1980).  Many theories are 

modeled as boxes (constructs) and arrows (relationships/

direction) (Shoemaker et al., 2004).  This method of sci-

entific explanation is derived from the logical-empirical 

paradigm primarily drawn from the work of Hempel and 

Oppenheim (1948) and Popper (1934/1959).  The logical-

empirical paradigm states that an explanation consists of 

logically structured theories that allow for deduction of 

hypotheses which can be empirically tested to falsify 

theoretical claims (Berger, 1977; Shoemaker, et al., 2004).  
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creasing at a much higher rate than the IV {(1, 1), (2, 4), 

(3, 9), (4, 16) …}.  Additivity refers to systems where the 

amount of variance explained in the dependent variable 

is the sum of the effects of the set of independent variables, 

as in a multiple linear regression equation (i.e., variance 

explained in the criterion variable is an additive function 

of a set of weighted predictor variables). Whereas the 

terms of a linear system can be separated, solved indi-

vidually, and then summed back together, the terms in a 

nonlinear system must be solved simultaneously (Camp-

bell, 1987).  As a result, “no general analytic1 approach 

exists for solving typical nonlinear equations.” (Campbell, 

1987, p. 219)  Instead, these systems are represented as a 

series of numbers to be interpreted qualitatively rather 

than as a single math expression.

Empirical communication research makes extensive 

use of inferential statistics to test theorized causal rela-

tionships.  Inferential statistics are used to determine the 

likelihood that an effect observed in a sample is large 

enough to represent a real result in some larger population 

of humans, media or events from which the sample was 

drawn.  Despite the stated goal that empirical work in 

communication be conducted by deriving hypotheses from 

theory, the majority of empirical work in communication 

employs inferential statistics to locate descriptive variable 

relationships (Bryant & Miron, 2007).  As such, much 

empirical research in communication is akin to Weaver’s 

(1948) description of research in the early life sciences: 

“largely concerned with the necessary preliminary stages 

in the application of the scientific method-- preliminary 

stages which chief ly involve collection, description, clas-

sification, and the observation of concurrent and appar-

ently correlated effects.” (p. 536) 

Table 1. Weaver’s historical eras of science

Simplicity Disorganized 

Complexity

Organized Complexity

Century 17th-19th 19th-20th 20th-21st 

Sciences Physical Biological/Behavioral Physical/Biological/

Cognitive/Social

Problem Variables/Relationships Probability/statistics Organization/Process

Variables 2-3 variables Billions of variables Two < n < Billions

Operate on Variables Averages Systems

Examples Laws of motion Thermodynamics Flocking/Herding

Communication Persuasion Public opinion Conversations/

Group discussions

1 Analytical solutions are those that can be represented as a math expression consisting of numbers and operators (e.g., +, -, *, ln, 

roots).  Analytic solutions are contrasted with numerical solutions that consist of a series of numbers.
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perature, entropy) in thermodynamic or kinetic systems 

that have millions of variables. While there is no law for 

temperature or entropy at the microscopic level of mol-

ecules, temperature and entropy laws are evidenced on 

average at the macro level of large collections of molecules. 

Because of the very large number of variables involved, 

these systems are not analytically solvable.  Instead, sci-

entists developed techniques of statistics and probability 

to tackle these problems3.  For example, insurance com-

panies depend on trends in human behavior to predict 

costs and rates, although they know almost nothing about 

the millions of individual customers those trends sum-

marize.  Communication researchers commonly use sta-

tistical probability techniques to understand general be-

havior trends in large populations of individuals 

represented as a general trend called public opinion.  

A third scientific era developed in the mid-20th cen-

tury and continues to develop through the 21st century: 

problems of organized complexity.  These problems exist 

in the space between problems of simplicity and disorga-

nized complexity.  Weaver (1948) writes that these prob-

lems are both “just too complicated to yield to the old 

nineteenth-century techniques which were so dramati-

cally successful on two-, three-, or four-variable problems 

of simplicity” and “cannot be handled with the statistical 

techniques so effective in describing average behavior in 

problems of disorganized complexity.” (p. 540)  These 

midlevel problems focus on phenomena that display a 

level of self-organizational behavior that is not reducible 

to simple laws, such as herding and f locking behavior 

(Reynolds, 1987), superconductivity (Anderson, 1972), 

weather (Lorenz, 1963), neural processing (Beer, 2000; 

Sporns, 2002; van Gelder, 1998), and many types of social 

organization (Miller & Page, 2009).  They are problems 

“which involve dealing simultaneously with a sizable 

number of factors which are interrelated into an organic 

whole.” (Weaver, 1948 p. 541)  For Weaver, these problems 

included problems from chemistry (e.g., how two chemi-

cals can consist of the same atoms, yet one be poisonous 

and the other harmless); biology (e.g., how protein mol-

ecules know how to reproduce their own pattern), and 

Different Eras Use Different Approaches 
to Science

Communication science’s focus on laws and statistical 

trends ref lects two of the most important scientific para-

digms of the last four centuries.  In the past 50 years, a 

third major scientific paradigm has emerged.  Renowned 

American mathematician and science advocate, Warren 

Weaver (1948), argues that these three great movements 

in the history of Western science can be distinguished by 

the size and complexity of problems they addressed, from 

relatively simple, to disorganized and complex, to orga-

nized and complex (see Table 1).  The first era, which 

Weaver labels “problems of simplicity”, are represented 

by the traditional two variable physics of the 17th through 

19th century (e.g., Newton’s laws, Maxwell’s equations, 

Ohm’s law).  These problems represent comparatively 

simple relationships among two or three individual vari-

ables, typically stated as equations that specify how pro-

portions among variables change over time (e.g., Newton’s 

second law of motion states that the change in momentum 

of a body is directly proportional to the acting force F 

and inversely proportional to its mass m; F=d(mv) )/dt).  

Exact solutions are analytically solvable for these prob-

lems, meaning that precise point predictions can be made 

for the values of missing variables or for future states2.  

This is the approach to science that Hempel and Oppen-

heim (1948) and Popper (1934/1959) describe in their 

philosophies of science and that communication Ph.D. 

students are taught to emulate (Shoemaker et al., 2004).  

By the late 19th century, physicists became concerned 

with problems that had many more than two or three 

variables.  Weaver (1948) calls these problems, best rep-

resented by the field of statistical mechanics, “problems 

of disorganized complexity”.  Disorganized complexity 

refers to systems displaying “helter-skelter, or unknown, 

behavior of all the individual variables; (although) the 

system as a whole possesses certain orderly and analyz-

able average properties.” (Weaver, 1948, p. 537-538, em-

phasis added)  For example, statistical mechanics uses 

probability theory to study average behavior (e.g., tem-

2 This statement is only true under certain limited conditions.
3 Note that statistics are unnecessary for problems of simplicity because it is possible to solve the system analytically.
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algorithms to accomplish computer learning (Holland, 

1995); understanding how apparently complex behavior 

can result from self-organization of inorganic material 

(e.g., autocatalytic sets, Kauffman, 1986); how very low 

intelligence animals evidence complex social behavior 

(e.g., ant behavior, Gordon, 2010; bird f locking, Reynolds, 

1987); and discoveries of dynamical systems properties 

of the human brain (Beer, 2000; Sporns, 2003; van Gelder, 

1998).  These discoveries and others repeatedly demon-

strate the counterintuitive, but compelling lesson of com-

plex systems research: the apparent complexity of the 

world can often be explained by simple sets of rules iter-

ated over large populations. 

Definitions

Because complexity science is a relatively new and 

highly multi-disciplinary area with a broad array of meth-

odologies, a consensus definition has yet to emerge (Mitch-

ell, 2009). Ilachinski (2001) defines complexity science 

as the study of systems in which an “increasing number 

of independent variables are interacting in interdependent 

and unpredictable ways” (p. xxvii).  Holland (2014) em-

phasizes that complexity is concerned with the subset of 

systems that display unique nonlinear and emergent be-

havior at different levels of hierarchy. For Holland, com-

plex systems are typified by self-organization, chaotic 

and fat-tailed behavior, and adaptive interaction. Wolfram 

(2002) simply refers to complexity as A New Kind of Science 

in which computers are used to test and reveal that “com-

plex behavior very much like what was seen in nature 

could in fact arise in a very general way from remarkably 

simple underlying rules” (p. 861).  Page (2011), who fo-

cuses on human social behavior, writes “Complexity can 

be loosely thought of as interesting structures and patterns 

that are not easily described or predicted.  Systems that 

produce complexity consist of diverse rule-following enti-

ties whose behaviors are interdependent.  Those entities 

interact over a contact structure or network.  In addition, 

the entities often adapt.” (p. 17)

Some researchers focus on understanding general 

principles of complex system behavior, while others use 

the insights and methodologies afforded by fundamental 

complex system research to understand specific incidents 

of complex behavior. The boundaries remain fuzzy. In an 

social science (e.g., what are the determinants of the price 

of wheat?; how can we stabilize currency?; why do orga-

nized groups such as labor unions or a group of manu-

facturers behave the way they do?).  Many of the most 

vexing communication problems such as conversational 

interaction, group dynamics, and negotiation, as well as 

other questions such as media choice, emergent Internet 

behavior trends (e.g., memes, f lash mobs) or the gradual 

coalescing of public opinion exist at this midlevel of how 

systems create order and/or adapt to other systems.  These 

problems have to do with how individuals co-organize 

meaning and experience in communication to accomplish 

higher level organization including culture, social struc-

ture, politics and economics. The remainder of the article 

will explore emerging third era research at the midlevel 

and propose some ideas about studying various types of 

communication interaction as an organized complexity 

phenomenon.

What are Complex Systems? 
A Brief Introduction

A half century after Weaver’s observations (1948), a 

major thrust of scientific research continues to be the 

study of complex systems (e.g., Anderson, 1995; Flake, 

1998; Miller & Page, 2009; Mitchell, 2009; Newman, 

2005; Solé, & Goodwin, 2000; Waldrop, 1993).  Beginning 

primarily in mathematics, physics, and computer science, 

complex systems research has expanded to a broad array 

of research disciplines including chemistry, biology, neu-

roscience, information science, medical science, cognitive 

science, economics, and public policy.  The shift toward 

complex system research has been facilitated by increas-

ing computational power resulting from the invention of 

the microchip.  Digital computers provided researchers 

the computational power necessary to analyze very large 

data sets, to model iterative dynamic systems, and to 

uncover mathematical principles proposed, but not tested, 

by past generations (Pagels, 1988).  In the process, scien-

tists have begun to unlock secrets of systems that were 

resistant to less computationally-intensive traditional 

methodologies.  Dramatic examples of complexity science 

include the use of the Lorenz attractor for weather predic-

tion (1963); the discovery of emergent fractal properties 

of the Mandelbrot sets (1983); the working out of genetic 
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Parallelism. 

The large number of agents in a complex system often 

work simultaneously on the same task.  Like billions of 

neurons processing human thought, parallel processing 

allows large tasks to be completed more efficiently.  More 

work can be performed in a given time frame than if work 

were arranged serially, with one agent waiting for the 

other to finish and pass off the work as in an assembly 

line.  

Iteration. 

In addition to the physical redundancy of collections, 

multiplicity, and parallelism, systems are redundant in 

time.  Redundancy in time is accomplished via computation, 

a broad class of information processing procedures which 

execute an algorithm (i.e., a sequence of instructions).  

Computation isn’t necessarily numerical; natural pro-

cesses such as cell reproduction, evolution, and neural 

networks are examples of computational processes as well.  

Iteration is a form of computation in which an algorithm 

is applied repeatedly in order to grow the system.  For 

example, icicles and stalactites grow through an iterative 

sequence in which new layers of liquid move toward the 

bottom of the structure and then solidify on the end.  

Iteration of an adaptive algorithm provides the opportu-

nity for a system to incorporate change from one time-state 

to the next.  In living systems, reproduction is a form of 

iteration (Flake, 1998).  

Recursion. 

Recursion is a computational process that differs from 

iteration in that its function “refers back to itself through 

information f low, inf luence or cause and effect” (Flake, 

1998, p. 463).  Sloman (1978) provides a simple example 

from computer programming: “in the set of instructions 

defining one program A, there is an instruction of the 

form ‘If condition X is satisfied then run program B’, 

while program B contains a similar call of program A.” 

(p. 117)  The system, consisting of the combination of 

programs A and B, refers back to itself at each step; A 

performs an algorithm on B and vice versa. Flake & Pen-

nock (2010) note that a biological ecosystem is recursive 

because of “the circularity of the ecosystem’s dependen-

attempt to provide some guidance, complex systems the-

orists have identified sets of characteristics common to 

most complex systems studied to date.  Mitchell (2009) 

summarizes these characteristics as: 1) behavior among 

large collections of components/agents; 2) signaling and 

information processing among components/agents; and 

3) adaptation in response to other components/agents and 

to the environment following deterministic rules.  Such 

complex systems are typically highly organized, robust 

against failure, capable of f lexibility, and self-organizing 

(there is no central actor dictating the behavior of the 

components). Perhaps the most familiar example of a 

self-organizing system is biological evolution. Absent a 

central guiding force, very large numbers of biological 

agents (organisms), with subtle individual differences 

(genetics), repeatedly apply evolutionary algorithms (de-

scent with modification) informed by feedback from the 

environment over millions of years to realize an organism 

that is robust to its environment (optimally adapted). 

Flake (1998) offers a similar list of six basic properties 

of complex systems that render these systems organized, 

adaptive and robust:

Collections. 

Complex systems typically have a very large collections 

of agents/actors (e.g., humans, bees, ants, cells, genes, 

molecules).  Large collections afford a fault tolerance in 

the system; the loss of any single agent or group of agents 

does not have a dramatic effect on the system.  Redun-

dancy is built into the system.

Multiplicity.  

Agents in a complex system frequently have subtle 

differences that make the system even more robust against 

loss.  If multiple agents represent different solutions to a 

survival problem, one of them is bound to work better 

than the others.  Page (2011) refers to this characteristic 

of complex systems as diversity within a type or variation.  

Examples are abundant in evolved organisms such as 

variation in size, color, sensitivity or resistance.  At high-

er levels of emergence, such as a human society, diver-

sity is often found in the composition of members of the 

system (e.g., teachers, police officers, doctors, janitors). 
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perature begins to fall again).  When the decreasing tem-

perature reaches a designated lower value, the thermostat 

sends a signal to the furnace to increase the heat (i.e., 

reverse the decreasing temperature). 

These six basic properties give rise to a vast assortment 

of organized, adaptive, and robust complex systems. 

Principles of number (i.e., large collections of redundant 

agents with minor differences, working in parallel) and 

process (i.e., recursion and iteration) provide the basis for 

organization in the system such that patterns of self-

similarity in appearance and behavior emerge via recur-

sive iteration of a set of rules across multiple agents in 

response to signals from the environment.  This allows 

the system to grow, adapt and survive, while retaining 

the core mission of the system. 

A frequently used example of a complex system is the 

behavior of ant colonies.  Ants display a rich, complex, 

and varied social life (see Gordon, 2010).  They are ca-

pable of finding all available food within a self-selected 

foraging area, organize armies to fight off threats, farm 

fungus, and build intricate homes for themselves, even 

constructing dams to protect the nest from f looding.  

Despite the appearance of complex organization, ants are 

neither centrally organized nor intelligent as well as func-

tionally blind.  In order to generate complex collective 

behavior, ants are programmed to attend to a very lim-

ited set of instructions (algorithms) repeatedly.  For ex-

ample, to forage, thousands of ants simultaneously travel 

random paths in the foraging area.  When an individual 

ant finds food, it returns to the nest laying down a pher-

omone trail as it goes.  When other randomly traveling 

ants come across the pheromone trail, the scent from the 

trail leads them to the food and then back to the nest. Like 

the first forager, each subsequent ant lays additional 

pheromone scent on the trail, drawing additional ants to 

the trail and the food.  Eventually, a stream of ants emerg-

es following the same trail, carrying food back to the nest.  

No single ant directs the behavior; discovery is random, 

and the trail is strengthened by positive feedback.  The 

overall behavior is so rich and complex-appearing that 

people frequently assume there is some level of hierarchy 

(e.g., a queen ant giving orders).

cies.” (p. 98)  That is, each generation is a function of the 

interdependencies among individuals (e.g., competition 

to reproduce) and species (e.g., predators and prey) found 

in the generation that preceded it.  They extend the eco-

system argument to the World Wide Web, whose structure 

and function result from recursive generational interde-

pendencies in terms of connectedness and traffic.  The 

greater a site’s connectedness, the greater its traffic and 

vice versa.  

Recursion accounts for self-similarity that is frequent-

ly seen in complex systems (Flake, 1998).  Self-similarity 

refers to a set of object characteristics that show the same 

properties at different scales (e.g., a map of one mile of 

coastline looks very similar to a map of 100 miles of the 

same coastline). The Mandelbrot equations are mathe-

matically recursive (the function being defined is applied 

within its own function) and gives rise to infinitely com-

plex fractals that nonetheless display the so-called 

‘Mandelbrot bug’ at every level (see example at 

http://www.wrongway.org/java/mandel.php).  Self-sim-

ilarity due to recursion is seen in many natural systems 

such as snowflakes, broccoli, tree branches, and crystals.

Feedback. 

Feedback can be defined as the “circularity of action 

between the parts of a dynamic system.” (Ashby, 1957, p. 

53)  Inherent in the concept of feedback is interaction 

between two parts of a system; a change in system A 

results in system B reacting by an increase (positive) or 

decrease/halting (negative) in function and vice versa.  A 

positive feedback loop exists when system A induces an 

increase in system B, which subsequently induces increased 

change in A.  For example, a positive feedback loop exists 

between humans and agricultural production.  As the 

number of humans increases, they do additional farming 

to provide an adequate amount of food; as food produc-

tion increases, there is enough food to support addi-

tional humans.  Negative feedback regulates a system by 

reducing (i.e., reversing) or halting change.  The canoni-

cal example of negative feedback is a furnace thermostat.  

The furnace increases room temperature until the ther-

mostat senses the temperature has reached a designated 

upper value, at which point the thermostat sends a signal 

to the furnace to halt production of heat, (i.e., effectively 

reversing the increasing temperature as the room tem-
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tion) provides a small set of rules that effectively explains 

the diversity of life (e.g., inheritance, fitness, random 

genetic modification). One of the best known examples 

of the second approach comes from Shannon’s (1948) 

highly inf luential paper A Mathematical Theory of Com-

munication.

Shannon entropy. 

Shannon entropy refers to a set of mathematical pro-

cedures for determining the amount of information in a 

system.  Following Boltzmann, Shannon conceived en-

tropy as the amount of randomness or unpredictability 

in a system.  Shannon’s (1948) entropy quantifies infor-

mation as the inverse of the amount of uncertainty in a 

communication system, specified as the relationship 

among transmission rate, reliability, bandwidth, and 

signal-to-noise ratio in the movement of a bit of informa-

tion over a phone system. The entropy equation measures 

how uncertain we are of an outcome given the number of 

available possibilities, the probabilities associated with 

those possibilities and the amount of noise in the system.  

This allows us to understand and compare the amount of 

uncertainty that is present in all kinds of systems, from 

data compression to biological sensory processing to 

econometrics or communication.  Information does not 

need to be formally encoded in a language; it can take 

any form that the system uses to organize itself.  Broad-

hurst and Darnell (1965) argue that “the important thing 

as far as rhetoric or human communication is concerned 

is that information theory provides a basis for a compre-

hensive theory of organization” (p. 452), which may in 

turn provide insight into the organization of effective 

rhetorical messages for various contexts and individuals.  

Theories such as uncertainty reduction theory (Berger & 

Calabrese, 1975) and diffusion of innovation (Rogers, 

1994) that claim communication is a process by which we 

reduce uncertainty about others are a natural fit for this 

type of complexity.  Some form of Shannon’s entropy 

could be used as a measure of the degree to which a com-

munication process reduces uncertainty.

Deterministic complexity. 

According to Manson (2001), deterministic complex-

ity refers to a type of complexity that “has four key char-

acteristics: (1) the use of determinist mathematics and 

Types of Complexity

Manson (2001) delineates three types of mechanisms 

found in complex systems: algorithmic, deterministic, 

and aggregate.  Algorithmic complexity is rooted in math-

ematics and information theory and examines systems 

that organize via iteration and recursion. As an adjunct 

of information theory (Shannon entropy, see below), al-

gorithmic complexity searches for the simplest algorithm 

that can reproduce complexity.  Examples include a range 

of work that has been done with Shannon entropy (Berg-

er, Della Pietra & Della Pietra, 1996).  Deterministic 

complexity has its intellectual roots in Poincare’s work 

on qualitative analysis of n-body systems and addresses 

topics including phase transitions, chaos, and catastrophe.  

It uses deterministic mathematics, along with feedback, 

to model qualitative change in systems.  Examples include 

population and extinction dynamics in a wide variety of 

wildlife (May, 1976; Zimmer, 1999) and chaos dynamics 

in neural systems responsible for biological information 

processing (Tsuda, 2001).  Aggregate complexity focuses 

on relationships and structure in systems that interact 

with an environment.  Often times these aggregate systems 

learn from their environment and adjust as needed.  The 

best example of such a system is Darwin’s theory of de-

scent with modification (evolution).  The following section 

describes each type of complexity in greater detail and 

provides examples that could be applicable to communi-

cation research.

Algorithmic complexity.  

Algorithmic complexity “contends that the complex-

ity of a system lies in the difficulty faced in describing 

system characteristics.” (Manson, 2001, p. 405)  One 

subtype of algorithmic complexity is concerned with 

quantifying the amount of effort required to solve a math-

ematical system.  A second subtype is more germane to 

the problems that communication researchers might en-

counter.  This type of algorithmic complexity is concerned 

with discovering the “simplest computation algorithm 

that can reproduce system behavior.” (Manson, 2001, p. 

405)  In other words, what is the simplest set of discrete 

rules that give rise to the behavior of interest.  There are 

many ways that the diversity of life on Earth may have 

come about; the theory of evolution (descent by modifica-
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space has as many dimensions as there are variables in 

the system (Figure 1 is the phase portrait of a three-di-

mensional system).  The initial conditions (starting values) 

of the system are mapped as a single point in phase space, 

after which the next point in the phase portrait is deter-

mined by applying the appropriate mathematical equation 

to each variable.  As the system applies the variable’s 

equations through successive points, the behavior of the 

system is mapped to create a phase portrait of system 

behavior.  The system can be iterated any number of times.  

The resulting phase portrait is mathematically determin-

istic because the specified equations determine each suc-

cessive point.  However, a single equation or set of deter-

minist ic equat ions may evidence a var iety of 

qualitatively different behaviors, a subset of which are 

known as attractors. 

May’s (1974; 1976) provides a relatively simple ex-

ample of how varying initial conditions in a nonlinear 

deterministic system can result in a variety of qualita-

tively different system behaviors.  May (1974) simulated 

the Verhulst (1838) population dynamics equations4 using 

mathematical attractors; (2) the notion of feedback; (3) 

sensitivity to initial conditions and bifurcation; and (4) 

the idea of deterministic chaos and strange attractors.” 

(p. 407)  Importantly, deterministic complexity frequent-

ly leads to abrupt and sometimes radical qualitative change 

in systems. The most commonly cited examples of deter-

ministic complexity are attractors and phase transitions.

Deterministic mathematics and attractors. 

Because complex systems are frequently nonlinear, 

they are commonly modeled by specifying relationships 

among variables (which can be any type of mathematical 

function) and the system’s interaction with the environ-

ment, and then iterated some number of times.  The result 

is not a point parameter (e.g., correlation), but a series of 

numbers representing patterns of behavior geometrically 

mapped onto a mathematical phase space.  Researchers 

examine the resulting patterns and how they unfold and/or 

move to resolution. Phase space is an n-dimensional 

portrait of all possible states of a system, such as a two-

dimensional space with an x-axis and a y-axis.  The phase 

Figure 1. The Lorenz attractor.  Created using 3D Attractor  version 1.0 by Juan G. Restrepo. Downloaded April 4, 
2014 at http://amath.colorado.edu/faculty/juanga/3DAttractors.html

4 This example can be understood better by doing the computations with different initial parameters and readers are strongly 

encouraged to do so.  Java applets are available on-line for this purpose at sites such as: https://math.la.asu.edu/~chaos/logistic.html 

and http://www.geom.uiuc.edu/~math5337/ds/applets/iteration/Iteration.html
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known as a phase transition (Solé, 2011). Phase transitions 

are where we see some of the most interesting and useful 

types of qualitative behavior of many systems (e.g., steam 

from boiling liquids).  As such, phase transitions are an 

important feature of the study of attractors.  The most 

familiar example is the transition of H
2
O from its solid 

state to liquid state at 0 degrees °C and from the liquid 

state to gas state at 100 degrees °C.  By understanding 

why and when a system will go into a phase transition, 

one can exercise control over the behavior of that system 

(Garfinkel, Spano, Ditto & Weiss, 1992; Solé, 2011). The 

moment of phase transition (aka: the edge of chaos) shows 

interesting and powerful dynamics that have proven to 

be useful in applied situations.  Consider all the uses that 

humans have made of the phase transition of water from 

liquid to gas (e.g., steam engines, cooking, steam heat).  

In addition to introducing new behavior to a system, phase 

transitions can also mark the moment when the system 

completely fails, known as catastrophe (Solé, 2011).

Familiar examples from communication include the 

qualitative change when two people in a conversation 

finally “get” one another, a sudden breakdown in nego-

tiations, or a moment of spontaneous applause during a 

speech.  Mass communication scholars write of abrupt 

shifts into and out of the f low state during media use 

(Sherry, 2004; Weber, Tamborini, Westcott-Baker, & 

Kantor, 2009).  Importantly, phase transitions are marked 

by a sudden change in the quality of behavior, rather than 

a gradual shift from one behavior to the next (Solé,, 2011).  

Because of this, phase transitions can often be located by 

using computer simulations of the system of interest, al-

lowing researchers to run the system under a wide range 

of parameters in search of values at which system behav-

ior changes. 

Aggregate Complexity. 

Aggregate complexity describes the manner by which 

a system self-organizes by delineating how the relation-

ships, structure and environment of a system adapt over 

time to create an emergent system.  Emergence is defined 

as the processes and mechanisms of micro-to-macro tran-

sition that result in unique, real and non-aggregatable 

properties that have autonomous causal powers (Sawyer, 

2004). That is, “emergent properties are present at certain 

levels of complexity, but not at lower ones” (Minati & 

a range of initial condition values.  Verhulst’s (1838) lo-

gistic equation (see Equation 1) specifies animal popula-

tion dynamics relative to the environment’s carrying 

capacity (see Vogels, Zoeckler, Stasiw, & Cerny, 1976).  

The Verhulst equation states that changes in a species 

population is proportional to the existing population and 

the amount of available resources: 

where N = population, r is the rate of population change, 

and K is the carrying capacity of the environment.  

In this model, the population N increases at rate r until 

it reaches capacity K.  May (1974) demonstrated that 

varying the initial parameters in this simple dynamic 

system (differential equation) will result in behavior that 

settles to one of three attractors: a single/equilibrium 

state (fixed point), a recurring behavior loop (limit cycle), 

or a phase portrait that does not settle to either a fixed 

point or a cycle (strange).  An attractor is a subset of phase 

space representing “the long term stable sets of points of 

the dynamical system, that is, the location in the phase 

portrait towards which the system’s dynamics are at-

tracted” (Goldstein, 2011, p. 5).  For population change 

rate values of 1.00 < r < 3.00, the iterated logistic equation 

eventually settles to a single, unchanging value for the 

population, known as a fixed point attractor.  For values 

of population change rate r in which 3.00 < r < 3.57, the 

system is attracted to a phase space called a limit cycle 

attractor.  In the case of a limit cycle attractor, the system 

will settle to a repeating set of values (hence the idea of 

‘cycle’).  Finally, when the population change rate value 

is 3.57 <  r  < 4.00, the system is attracted to a phase space 

known as a strange attractor.  The phase portrait of a 

strange attractor displays neither a fixed point or a limit 

cycle attractor, but instead the system progresses through 

a series of values that never repeat. The best-known strange 

attractor, resembling a butterf ly, is the three-dimension-

al phase portrait driven by the Lorenz equations (see 

Figure 1).

Phase transition. 

Attractors represent different qualitative behavior in 

a single deterministic system. The point at which the 

system changes from one type of behavior/attractor to 

another (e.g., from a limit cycle to a strange attractor) is 
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nents of the system.  There is no internal or external force 

dictating the new global behavior of the system; indi-

viduals acting within the system and without knowledge 

of global behavior drive the system.  Common examples 

of self-organized systems include f locking, herding, 

swarming, and schooling by large collections of animals.  

The canonical example of self-organization is a com-

puter program called Boids (Reynolds, 1987; there are 

numerous examples of Boids online, but its best to start 

with Reynolds’ web site which has reference to additional 

examples of self-organization: http://www.red3d.com/

cwr/boids/).  While trying to improve computer anima-

tion techniques, Reynolds (1987) developed a computer 

simulation that accurately reproduces the behavior of 

birds f locking using three simple rules: (1) steer toward 

the average heading of local f lockmates (alignment); (2) 

steer to move toward average position of local f lockmates 

(convergence); and (3) steer to avoid crowding local f lock-

mates (separation).  The animated computer boids show 

realistic and complex f locking behavior, even when con-

fronted with obstacles (f lock f lies around f lagpole) or 

when reacting to an external threat.  Note that no single 

bird has the cognitive capacity to control the movement 

of the f lock and that the three simple rules conform are 

within range of the limited cognitive ability of a bird (or 

fish, ant, buffalo). A well-studied example of human self-

organization is the standing ovation problem (Miller & 

Page, 2009) in which the emergence of a standing ovation 

is a function of each audience member’s seat location 

(front, back, or side of the room), neighbors (friend or 

stranger), and each audience member’s evaluation of the 

quality of the performance.  The dynamics of communi-

cation diffusion (e.g., a type of slang, a vocal affectation, 

healthcare information) could be modeled in a similar 

manner.

Adaptation.  

Adaptation refers to intergenerational learning.  Ad-

aptation models mimic the interact-and-adjust mechanism 

of evolution via a series of positive feedback loops.  The 

core idea behind adaptation comes from Darwin’s idea 

of descent by modification, in which each generation of 

an organism is challenged by its environment and either 

survives or dies off.  Those that survive create offspring 

that inherent traits that make the offspring more robust 

Pessa, 2007, p. 90).  This is not to say that the system that 

emerges is not reducible, but to say that the mechanism 

that gives rise to the emergent phenomenon is not simply 

the sum of parts, but a process of organizing (Bedau, 

2011).  In this way, organized complex systems are both 

emergent and reducible (Anderson, 1972).  Take the be-

havior of foraging ants as an example.  The foraging ant 

system is reducible to a number of ants, some ant food, 

pheromone signals, some territory, and a nest.  Each of 

these items is further reducible to various components, 

molecules, atoms.   However, foraging behavior only 

emerges when the ants enact the mechanistic search al-

gorithm.  Bedau (2011) argues that any conception of 

emergence must meet the twin hallmarks of explaining 

how the whole depends on its parts and how the whole is 

independent of its parts.  Clearly, if any part of the system 

is absent (e.g., food, ants) foraging is not possible (what 

Sawyer refers to as a non-aggregatable system).  On the 

other hand, other animals forage and communicate by 

scent; foraging is an activity that is not dependent on a 

particular set of components.  Emergence in complex 

systems results from the dynamics of the system as it 

changes over time according to deterministic rules, feed-

back and adaptation. 

Nature is replete with examples of qualitative differ-

ences in substance that are not simple functions of a 

lower deductive level.  John Stuart Mill (1872) noted that 

“The chemical combination of two substances produces, 

as is well known, a third substance with properties dif-

ferent from those of either of the two substances sepa-

rately, or of both of them taken together.” (p. 371)  As 

another example, a brain is a collection of a variety of 

cells, each of which engaging in a slightly different be-

havior; the most familiar of which is conducting electric-

ity from one synapse to another.  However, none of these 

cells can imagine a cell.  It takes the collection of cells, 

organized in one of many possible configurations, to 

imagine a thing called a cell.  Though cells are used for 

thinking, a cell cannot think.  How is thought accom-

plished?

Self-organization. 

Emergence is the result of system self-organization.  

Self-organization refers to a group of models in which 

global order arises from interactions among the compo-
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as the adjustment of rhythms of self-sustained periodic 

oscillators (a system that varies repetitively in time, such 

as a pendulum) due to their weak interaction (the moving 

platform).  Synchronization is observed in a wide variety 

of behaviors, from the f lashing of firef lies in unison to 

human circadian rhythms to neural processing in cardiac 

sinus rhythm, as well as in numerous communication 

situations (Burgoon, Stern, & Dillman, 1995).  There are 

a number of types of synchrony, but they all share the 

same set of basic characteristics.  First, synchronization 

can only occur between oscillating systems. The systems 

must oscillate (display a regular repeated pattern of 

change). In the case of the metronome, the oscillation 

occurs as the arm swings from one side to another over 

time.  Second, synchronization happens between two or 

more independent systems; any individual metronome 

will run independently of all other metronomes.  In oth-

er words, the systems must be independent, self-sustain-

ing oscillators.  Next, the systems need to weakly interact 

with one another (they must be coupled). The process 

happens in a variety of ways, including master-slave sys-

tems (slave oscillator synchronizes to the master), exter-

nal forcing (an external force acts on both systems), pulse 

coupling (exchange of signals move each oscillator toward 

the other), and others.  In the pendulum example, the 

moving platform that they share is the coupling device.  

Essentially, the coupling device provides the channel for 

communication among oscillators.

Several types of human cognition appear to result from 

the synchronization of neurons in the brain (an EEG is 

designed to detect the electrical signal generated by neu-

ral synchronization).  If communication is the process by 

which a cognition is moved from one brain to another 

brain and cognitions are neural synchronization, com-

munication is a set of behaviors used to synchronize 

neural systems between brains (Hasson, Ghazanfar, 

Galantucci, Garrod, & Keysers, 2012; Jiang et al. 2012; 

Nummenmaa et al. 2012).  That is, in order to transfer an 

idea from one brain to another, the sending brain needs 

to generate a similar pattern of neural synchrony in the 

receiving brain as in the sending brain. The degree to 

which two systems are moving toward being in sync can 

be measured using the Lyapunov exponent (lambda), 

which measures the separation in orbits (paths of the 

system) in time. 

against the challenges in the environment than prior 

generations.  Importantly, descent by modification occurs 

at the species level as a function of the survival of gen-

erations of organisms, rather than at the level of the in-

dividual.  That is, the organism has no knowledge of the 

overall mechanism by which the species becomes robust 

over time.  John Holland (1995) modeled this process 

when he created genetic algorithms: a process intended 

to create artificial computer learning.  Genetic algorithms 

represent a single entity as a string of values (e.g., like a 

genetic code).  For each generation, all the strings in a 

population are judged according to a preset criterion and 

strings that meet the criteria move to the next generation.  

By iterating the presentation, evaluation, and modifica-

tion sequence many times, the string becomes optimized 

for the environment (preset criteria) via the mechanism 

of adaptation.  Genetic algorithms are commonly used 

by engineers to optimize systems for a specific set of 

environmental challenges.

For example, one could imagine the process of educa-

tional communication as a adaptation process in which 

the teacher is providing successive generations of feedback 

to a group of students (even while receiving feedback on 

her own behavior).  She might present information using 

a set of techniques that she believes will be successful in 

her environment (students). These techniques are judged 

by the students’ reactions and success at learning (envi-

ronmental criteria), even while the students judge their 

own behavior by the standards provided by the teacher 

(grades). She and her students can modify the next set of 

techniques, keeping those parts of the string that appeared 

to fit the environment and discarding those that do not.  

Over time, her teaching style and the students’ learning 

style becomes optimized due to feedback and intergen-

erational learning.

Synchronization.  

In addition to adapting to optimize behavior, systems 

also adapt to match other systems.  This is a process 

known as synchronization.  For example, two metronomes 

(i.e., pendulums) sharing a moving platform will eventu-

ally align so that they swing in common time (numerous 

video examples can be found on-line by searching “met-

ronome synchronization”, e.g., http://www.youtube.com/

watch?v=W1TMZASCR-I).  Synchronization is defined 
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the case, it makes sense to pursue this approach in com-

munication research.

Mitchell (2009) states that complex systems are typi-

fied by behavior among a large number of components in 

which there are signaling and adaptation in response to 

other components and the environment. From this set of 

characteristics, it is clear that communication plays a 

central role in complex system behavior (signaling among 

agents). However, that is not the same as stating that 

communication is a complex system. Flake (1998) provides 

six criteria for complex systems: collections, multiplicity, 

parallelism, iteration, recursion and feedback. To what 

extent does communication meet these criteria?  To explore 

whether communication meets the criteria of a complex 

system, we will consider the case of an interpersonal 

conversation among three friends, held up against each 

of Flake’s (1998) six criteria (see Table 2). The friends are 

sitting at a coffee house engaged in the type of wide-

ranging conversation that frequently happens in these 

settings.

Collections. 

Collections refer to the fact that complex systems are 

made up of very large sets of agents (actors).  If we take 

the unit of analysis in conversation as the individual, a 

communication system does not appear to qualify as hav-

ing a collection.  However, the individual is the unit of 

analysis for psychology, not communication.  Instead, the 

unit of analysis for communication is the set of components 

that make up the system of exchange.  These components 

are a collection consisting of nonverbal display (i.e., ar-

tifactual communication), signaling (e.g., unintended 

physiological response such as pupil dilation, muscle 

twitch), verbal behaviors (e.g., words, speech acts, frames), 

and nonverbal behaviors (e.g., proxemics, vocalics, ges-

tures, prosody, haptics). Imagine the number of commu-

nicative symbol components our three interactants create 

in the course of their conversation.  Now imagine that 

the conversation is being held via computer-mediated 

communication (CMC).  The loss of display, signaling 

and nonverbal behavior components does not prevent the 

conversation from occurring, but it may affect the number 

of components that make up the conversation system.  

Organized Complexity 
and Communication Science 

There has been little written in the communication 

science literature on alternatives to variable analytic or 

statistical approaches to scientific research.  Instead of 

studying communication as a process that unfolds over 

time, communication is studied as structural relationships 

among variables and functions (e.g., persuasion, social 

support) of those relationships (Salem, 2013).  In fact, 

Poole (2007) estimates that less than 10% of articles in 

communication journals focus on process rather than 

structure and function of variance approaches.  Often, 

when confronted with problems that don’t conform well 

to static variance-based approaches, scholars have either 

engaged in interpretive, qualitative research or simply 

ignored the question.  Unlike interpretive qualitative 

research, complexity research values objective empirical 

observation and logical explanation.  However, those 

explanations take a very different form than the two-three 

variable laws common in communication research.  Most 

often, explanation in complexity research consists of a 

description of a system, the mechanism that animates the 

system over time, and the possible outcomes of the system 

for different parameters.  Analysis is not restricted to 

linear operation, but is most often nonlinear (or a com-

bination of both), making point prediction inappropriate.  

Instead, organized complexity research focuses on the 

structure and process by which midlevel systems give rise 

to new and sometimes unpredictable behavior.

Is Communication a Complex System?

Communication scholars have long grappled with the 

apparent complexity of human communication, particu-

larly as it changes over time.  Miller (1977) felt the chal-

lenge was not beyond us.  He wrote, “to say that a set of 

phenomena differ in many ways does not imply that there 

are no regularities which the phenomena share. The task 

of the communication scientist is the discovery of these 

regularities.” (p. 7)  It may be that the complex system 

approach is what our field has been waiting for to disen-

tangle the complexity of human communication.  First, 

we need to know the extent to which communication 

meets the characteristics of complex systems. If that is 
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Table 2. Characteristics of Communication and Complex Systems

Complex Systems Communication

Collections Verbal & nonverbal symbols

Multiplicity Number of talk turns 

Parallelism Multiple simultaneous communication channels

Iteration Repetition of conversational forms; Cultural codes, jargon & slang

Recursion Reference to prior utterances and building upon those utterances; Rules of talk turns; 

Grice’s conversational maxims

Feedback Effect of each message on subsequent messages can add to or limit communication; 

Communicative adjustment to conversational partner

Parallelism. 

Parallelism refers to simultaneous agent behavior that 

allows tasks to be accomplished more efficiently. The 

communication system our three interactants are using 

consists of a high degree of parallelism in display, signal-

ing, verbal, and nonverbal communication components. 

If one interactant decides to make a sarcastic remark, it 

is necessary for him to create simultaneous, but incongru-

ent, verbal and nonverbal messages. Conversely, an un-

intended nonverbal behavior may make a particular ver-

bal message difficult to interpret. There are often subtle 

and unconscious uses of parallel signals.  We might observe 

that our three interactants move in a subtle coordinated 

manner as they talk. Nonverbal postural synchronization 

has been shown to affect a variety of communication 

outcomes, including facilitating mutual understanding 

(Richardson, Dale, & Shockley, 2008; Shockley, Richard-

son & Dale, 2009; Shockley, Santana, & Fowler, 2003). 

Iteration. 

Iteration has been found at multiple levels of conver-

sational communication (e.g., words, phrases, prosody, 

nonverbal movement).  A number of nonverbal scholars 

have identified common use or matching of nonverbals 

among interactants (for an excellent overview of this 

Multiplicity. 

Multiplicity refers to variation in type among the agents 

in a complex system.  Minor variations among agents 

make the system robust against failure by allowing for a 

number of different solutions to a survival problem.  This 

is a well-known feature of verbal and nonverbal commu-

nication systems: there is more than one way to express 

or interpret an idea.  Communication can be seen as a 

process of negotiation of meaning transfer among people 

who have different manners of expression as well as dif-

ferent background knowledge and assumptions.  In our 

example case, the three interactants are friends who 

likely share a common set of communication symbols and 

meanings.  This would not be the case if the three inter-

actants were strangers from different cultural backgrounds.  

Communication accommodation theory (Giles, Coupland, 

& Coupland, 1991) posits communication as a process of 

convergence or divergence among people with different 

cultural and linguistic backgrounds. Because each of our 

three interactants brings culturally different experiences, 

goals, and expectations to the conversation, there is an 

inherent multiplicity of linguistic and nonverbal expres-

sion, messages and topics for conversation.  Despite the 

multiplicity, communication can be successful when in-

teractants use the variety in language to negotiate common 

meaning.



John L. Sherry

38 www.rcommunicationr.org

Feedback. 

Of course, feedback has long been considered an im-

portant feature of communication (see Berlo, 1960; 

Johnson & Klare, 1961). From a complex systems perspec-

tive, feedback is a type of communication that a system 

has with itself as well as between itself and the environ-

ment. Feedback provides information to the system so 

that it can adjust to internal and external demands.  Both 

positive and negative feedback are evident in conversa-

tions. Positive feedback drives the conversation forward 

toward change and new ideas. We might think of our 

three friends brainstorming a solution to a problem. Each 

talk turn has the potential to move the conversation in a 

new direction. On the other hand, there are clear conver-

sational signals that are negative feedback in that they 

prevent the conversation from moving in certain direc-

tions.  Perhaps one of our friends is devoutly religious 

and another is staunchly atheistic.  As the brainstorming 

conversation moves toward religion, the third member 

may exercise negative feedback control to keep the con-

versation from breaking down into an argument.

Given that human communication displays all the 

characteristics found in other complex systems, adopting 

ideas from complexity science has some efficacy for en-

hancing our understanding of human communication 

processes. Complexity science shows that simple rules 

iterated over large populations determine emergent be-

havior. It may be that communication follows established 

rules of complex systems, requiring those interested in 

studying human communication processes to adapt exist-

ing rules to communication (e.g., Shannon entropy, pred-

ator-prey models).  Additionally, it is also possible that 

communication contains new, unknown rules for com-

plexity science.

Communication Considerations 
of Complexity

The shifting paradigm in other sciences has not gone 

completely unnoticed by communication researchers. A 

number of overviews and theoretically oriented articles 

and chapters have been published over the past two de-

cades, though there remains a lack of empirical studies. 

The most thorough volume on complexity and commu-

extensive research, see Burgoon et al. 1995).  We may find 

that our three interactants fall into common repetitive 

speech patterns (e.g., playing ‘the dozens’, repeating fun-

ny lines from a movie).  At a higher level, we may find 

that they are iterating a series of double interacts such as 

the Scheidel and Crowell (1966) cycle act—respond—

adjustment.  Linguists have identified both iteration and 

recursion as fundamental types of sequential semantic 

arrangement of language (Karlsson, 2010).  Karlsson 

argues that the “main difference is that recursion builds 

structure by increasing embedding depth whereas itera-

tion yields f lat output structures, repetitive sequences on 

the same depth level as the first instance.” (p. 45)  As 

such, iteration is created by concatenating a series of 

structural elements (e.g., a series of clauses, listing a series 

of names) all at the same level.

Recursion. 

Similarly to iteration, recursion appears to be a dom-

inant feature of communication in that each talk turn or 

message point builds from and upon prior messages.  In 

fact, Hauser, Chomsky and Fitch (2002) argue that recur-

sion “is the only uniquely human component of the fac-

ulty of language.” (p. 1569)  Grice (1975) argues that any 

talk turn that does not somehow refer to the prior talk 

turn is considered odd (though conversations can be 

peripatetic in certain contexts).  While it is difficult to 

predict with a great deal of certainty where our three 

interacts’ conversation will go, we can be quite certain 

that each subsequent talk turn is built upon the conver-

sational turns that went before. Recursion often gives rise 

to self-similarity within behaviors in the system.  Com-

munication displays high levels of  self-similarity of lan-

guage (cultural codes and generational slang) even as 

language evolves across time.  Recursion patterns can be 

found in Grice’s (1975) other maxims as well, that spec-

ify rules for responding to others in conversation.  Stech 

(1979) outlines and tests for the presence of these rules in 

three sets of transcripts. Though he finds that some rules 

are followed more than others, his transcript analyses 

showed a significant and predictable rule structure guid-

ing communication. The field of discourse analysis has 

located many such patterns, though they do not tend to 

quantitatively analyze the presence of recursion patterns.
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in an earlier volume on organizational communication 

edited by Barnett & Thayer (1997) proposed a generative 

mechanism for decision-making groups as a self-organi-

zation process. The proposed model was linear, and there-

fore not a direct fit with the types of models typically used 

in complexity research, but represents an attempt to em-

brace the idea of self-organization in a mathematical 

manner. Publishing in a different communication area, 

Sherry (2014) illustrated how uses and gratifications shares 

common assumptions with complexity and how under-

standing video game play and learning as a complex 

system will lead to more effective interventions. He pro-

posed a phase transition model to explore the qualita-

tively different outcomes frequently observed in the games 

and learning literature.

In 1996, the Journal of Communication published a sym-

posium issue on Bibb Latane’s dynamic social impact 

theory (Fink, 1996). While Latane’s theory is primarily 

psychological, Fink notes that it models processes that 

cut across many levels within the domain of communica-

tion research.  Dynamic social impact theory is primar-

ily concerned with the creation and maintenance of cog-

nitive constructs such as attitudes, beliefs and belief 

systems. Because attitudes and beliefs are a function of 

both individual psychology and social interaction, the 

theory posits a cultural system with which individuals 

interact. Within this system, individuals interact in a 

recursive and stochastic (Markovian) manner.  Nonlin-

earities exist in terms of catastrophe and emergent cha-

otic dynamics. Work on dynamic social impact theory is 

sometimes done using cellular automata and simulation. 

The articles that  comprise the symposium are all co-

authored by Latane and illustrate dynamic social impact 

system theory across a variety of communication phe-

nomena including: culture, cognition, intersubjectivity, 

and stereotypes.

A few articles in communication journals have also 

provided a general introduction to ideas from complexity 

science and illustrated how those ideas might be applied 

to communication problems (e.g., Bruder, 1991; Hoffman, 

2008)5.  Following May (1976), Buder (1991) employed 

nication is Philip Salem’s (2012) book The Complexity of 

Human Communication.  In this broad treatment, Salem 

(2012) connects many of the better known concepts from 

complexity science (e.g., attractors, emergence, self orga-

nization/autopoiesis/autocatalytic sets, agent adaptation/

evolution, and networks) with a broad range of general 

ideas in the communication literature such as interaction, 

credibility/trust, information, conf lict and storytelling.  

In the third chapter, he proposes a model of dynamic and 

complex communication framed within Fisher’s (1987) 

typology of communication research foci and drawing on 

the work of several communication scholars (e.g., Wieck, 

Burgoon, Watzlawick, Baxter).  The model, which he calls 

the social channel, describes communication as a process 

of interaction that results in emergent relationship among 

communicators. The actors in the model are self-aware 

and incorporate signals from themselves and others in 

the process.  Though he does not mathematically specify 

the algorithms by which his actors will create emergent 

relationships, he hints at future possibilities.  Overall, 

Salem’s book covers a good deal of ground in linking 

communication with complexity science.

There have also been several edited books in the field 

that include chapters on concepts from complex system 

research (e.g., Barnett & Houston, 2005; Contractor & 

Whitbred, 1997; Sherry, 2014; VanLear, 1996).  In 1996, 

Watt and VanLear published the most extensive work on 

communication dynamics, which featured a few chapters 

on complexity.  Though many of the dynamic mathemat-

ical models proposed in the volume followed traditional 

linear thinking, the book included introductions to cel-

lular automata (Corman, 1996), self-organization (Con-

tractor & Grant, 1996), and nonlinear systems (VanLear, 

1996).  These chapters were primarily designed to intro-

duce concepts and didn’t include specific theory or data 

arising from these topics.  Similarly, Barnett & Houston 

(2005) edited a volume on self-organization that provided 

introductory overviews on such several concepts from 

complexity science including autopoiesis, catastrophe 

theory, fractal geometry, dissipative structures, and cel-

lular automata.  Contractor & Whitbred’s (1997) chapter 

5 There are additional articles that purport to be in line with mainstream complexity research, but the ideas that they draw on are 

not consistent with the general principles of complex systems research as it is currently accepted (e.g., Corman, Kuhn, Mcphee 

& Dooley, 2002; Fisher, Glover & Ellis, 1977).



John L. Sherry

40 www.rcommunicationr.org

complexity has been conducted outside of the field of 

communication by researchers in neuroscience, com-

puter science, mathematics, mathematical sociology, and 

cognitive psychology. For example, neuroscientists Oul-

lier & Kelso (2009) study the self-organizing nature of 

social and neural mechanisms that facilitate bonds among 

individuals. They posit social coordination dynamics as 

self-organizing dynamical systems that are coupled via 

information exchange. In other words, synchronization 

of individual behavior and neural processing is used by 

organisms to form bonds with other organisms.  Research 

in this area looks at spontaneous human synchronization 

by simultaneously looking at behavior dynamics and brain 

dynamics during interaction.  Similarly, Shockley (2005) 

and colleagues (Pellecchia & Shockley, 2005; Shockley, 

Richardson & Dale, 2009; Shockley, Santana & Fowler, 

2003) have studied postural dynamics during conversa-

tions. They track the center of pressure of individuals 

conversing while standing on a force platform. Using 

nonlinear recurrence analysis, they found evidence for 

synchronization of postural position among individuals 

in conversation.

Andras, Roberts & Lazarus (2003) created a simulation 

to investigate the contribution of communication to co-

operation in groups. While economists have created agent-

based models of the formation of cooperation groups due 

to altruism or indirect reciprocity, none of the previous 

models had allowed agents to communicate their inten-

tions. The Andras et al. (2003) agent-based model allowed 

agents to signal their intention to cooperate, allowing 

cooperators to find each other and cheaters to poten-

tially be ostracized.  Agents chose collaborators in a 

simulated world in which risk is increased as a function 

of the time it takes to make the decision to collaborate: 

spending too much time confirming the intentions of a 

potential partner risks losing the first-mover advantage 

in the market, while spending too little time confirming 

partner intentions may result in poor collaborator choice.  

They found that communication creates positive feedback 

loops that facilitate cooperation for agents who intend to 

cooperate, but slow collaboration formation when a po-

tential cheater is present. 

Mastragneli, Schmidt and Lacasa (2010) were inter-

ested in the dynamics by which conversational groups 

schism into smaller groups (Egbert, 1997), a question that 

had been qualitatively studied by Goffman (1963) and 

the logistic equation for population dynamics to illustrate 

how a variety of outcomes, in terms of attractor states, 

are possible in conversation.  Bruder (1991) applied the 

equation to the communication context by modeling the 

effect of level of involvement (the rate term) on the ongo-

ing communication behavior (the N term).  Like May’s 

(1974) initial study, Bruder’s series of simulations showed 

that all the types of attractors are possible outcomes based 

on the magnitude of the rate parameter.  Because he uses 

the same algorithm as May, this is not surprising.  The 

usefulness of Bruder’s model is dependent on whether the 

real world communication dynamics he is trying to mod-

el are equivalent to the animal population dynamics 

modeled by the Verhulst/May’s equations. 

Hoffman (2008) attempts to shift communication re-

searchers’ understanding of causality by asserting that 

complexity science shows “both coherence and novelty 

arise from the coupling of forces of regularity and ir-

regularity, a coupling that characterizes interactive living 

activity.” (p. 427)  She primarily focuses on organiza-

tional communication, drawing most of her insights from 

the work of management professor Ralph Stacy (2001) 

and psychiatrist Daniel Seigel (1999), as well as organi-

zational communication researchers Weick (1995) and 

Taylor (1995).  Central to her argument is the idea that 

complexity shifts communication from a deterministic 

to a transformative perspective of uncertainty.  Though 

she does not define ‘transformative’, she notes that com-

munication is often paradoxical, is embodied in the com-

municators, can be unstable, and does not need to embrace 

the content-relational split in messages.  The article con-

tains many analogy-based connections between complex-

ity and communication, but there are some misunder-

standings.  For example, her use of the term determinism 

appears to be incorrect (she does not offer a definition) 

in that she argues that a complexity approach will rid the 

field of determinism.  However, most complex systems 

are deterministic.  Hoffman appears to have meant to use 

the term linear rather than deterministic because complex 

systems are not analytically predictive in the long run 

(e.g., chaos) and the deterministic rules may realize sys-

tems that are similar, though qualitatively different from 

one another (e.g., fractals).  Nonetheless, she offers com-

plexity as a likely response to Craig’s (1999) call for a 

constitutive approach to communication.

The bulk of the empirical work on communication and 
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research.  It will not be as simple as merging quantitative 

and qualitative analysis into complexity analysis.  To do 

so would neglect crucial insights that make complexity 

research so compelling as a third scientific paradigm.  

Instead, researchers will need to come to terms with some 

highly sophisticated mathematical methods and with a 

proper understanding of computational simulation.  We 

will need to solicit assistance from mathematicians and 

computer scientists.   

A process for studying complex systems 

There is no quick and easy way to solve the problems 

inherent in doing complexity research with communica-

tion.  Instead, a large number of new ideas must be mas-

tered, and careful thought must be put into figuring out 

the nature of the organized system under observation.  

One process by which a group of researchers might study 

communication as a complex system is as follows: (1) 

decide whether the phenomenon is a problem of organized 

complexity; (2) assess the type of complexity it might be; 

(3) determine what is the composition of the system and 

what is changing over time in order to realize the observed 

organization; (4) determine the rule for change over time; 

(5) formalize and test the system computationally under 

a variety of parameters; (6) verify those results against 

nature; and (7) experiment with the simulation.  The goal 

is not to determine the degree to which the results ex-

actly match nature (e.g., as variance explained), but 

whether the computational model is an accurate mecha-

nism for recreating the process by which nature creates 

its diversity.

Assess fit to paradigm. 

The first step is to understand that complexity ap-

proaches are not a panacea for studying all communica-

tion problems. We need to assess the phenomena we want 

to understand in terms of its level of complexity. The key 

is to match the approach to nature, rather than the other 

way around.  Problems that fall into the area of organized 

complexity are ones that evidence organization, adapta-

tion, and robustness (Miller & Page, 2009).  Not all com-

munication questions are of this ilk, but many are.  When 

a problem of organized complexity has been identified, 

the next step is to determine the level at which the system 

Sacks, Schegloff & Jefferson (1974). They created a simple 

agent-based model simulation in which 15 agents were 

placed around a table and allowed to form conversa-

tional groups based on each agent’s individual happiness 

with the conversation (modeled as interest in continuing 

in a particular group’s conversation). Though assumptions 

about the conversation were abstracted considerably to 

facilitate modeling, the iterated model showed that the 

initial single group of 15 members broke down to four 

groups of 3-5 members within the first 20-125 iterations, 

similar to what happens in real conversational groups.  

Mastrangeli et al. (2010) concluded that “characteristic 

time needed to reach the stationary state scales exponen-

tially with the maximum level of happiness, and linearly 

with the number of participants.” (p. 10)  In other words, 

the greater the range of happiness and the number of 

participants, the longer it takes for groups to stabilize.

Research Methodology for Complexity 
Research in Communication

Complexity research presents a unique set of chal-

lenges for communication researchers who are more ac-

customed to variable analytic, static model testing.  Salem 

(2012) lists these as: (1) challenges to quantitative analy-

sis; (2) challenges to qualitative analysis; (3) challenges 

of mixing quantitative and qualitative analysis; and (4) 

additional problems related to mathematics and simula-

tion.  Quantitative scholars versed in statistics may well 

be intimidated by the size and breadth of datasets required 

to analyze complex systems over time.  Interactions among 

several variables measured at hundreds of points in a time 

series could quickly overwhelm the data management and 

computational capacity of most statistical software.  In 

addition, it is necessary to account for dependencies among 

variables over time.  Qualitative researchers face the chal-

lenge of treating complexity as more than a metaphor.  

Many ideas from complexity science are apparent in 

qualitative analysis, but rigorous mathematical treatment 

of dynamics is typically noted for its metaphorical rela-

tionship to complexity.  Commitments to qualitative 

analysis at all costs (e.g., Schegloff, 1993) will need to be 

rethought.  In other words, qualitative scholars will need 

to become more quantitative, even as they help quantita-

tive scholars to embrace the complexities of qualitative 
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adopters) change agents, opinion leaders, and the avail-

able communication channels (e.g., Internet, radio, pam-

phlets).  These components may be structured in common 

groups such as family, work colleagues or neighbors.  The 

environment consists of variables that impact on adoption 

(e.g., availability of electricity, access to 4G wireless 

signals, supply chain of products to the town, retail out-

lets).  The mechanism for this system, from diffusion 

theory, is the exchange of communication that reduces 

uncertainty about the new technology.

Determine the rule for change over time.  

The rule for change over time, or transition function, 

dictates how the system will evolve over time.  The tran-

sition function is traditionally specified as a differential 

or difference equation, dependent on whether the dynam-

ics of the system are believed to be continuous or discrete.  

For example, in 1969, Bass published a dynamic model 

of new product diffusion, based on Rogers’ (1961) diffu-

sion of innovation research (see Equation 2).  The transi-

tion function states that the likelihood of adoption at any 

particular time [L(t)] is a linear function of both external 

inf luence (p) and internal inf luence (q) where the effect 

of internal inf luence (e.g., imitation, word of mouth) is 

proportional to the ratio of current adopters [A(t)] to 

potential (M ) adopters.  As adoption increases in a fixed 

population, the overall rate of adoption shrinks because 

there are fewer potential adopters relative to actual adopt-

ers.  Bass (1969) compared his model to actual sales data 

from eleven consumer goods and found a very good fit 

for each.

( )( ) (2)qL t p A t
M

= +   

The system becomes dynamic when the transition 

function is applied to the values of the initial conditions 

of the system.  The trajectory of the system (phase portrait) 

can then be geometrically mapped onto phase space for 

analysis (for an interesting collection of phase portraits, 

see Julien C. Sprott’s collection at http://sprott.physics.

wisc.edu/fractals.htm). 

is organizing, adapting, or creating robustness to envi-

ronmental harm.  While linguists and many communica-

tion researchers have focused on the signal level (e.g., 

verbal messages, nonverbal behaviors), it is also possible 

that important aspects of communication occur at higher 

emergent levels.  This is the case for communication ac-

commodation theory (Giles et al. 1991) and relational 

frame theory (Drake & Donohue, 1996). 

Think about the type of complexity.  

One of the interesting findings in complexity science 

is that the same organizing mechanism may be found 

across organic and inorganic materials at a variety of 

levels of organization (Mitchell, 2009).  It is probable that 

some of the mechanisms that have been found in other 

complex systems may also be used in communication 

behavior (i.e., synchronization, adaptation, and Shannon 

entropy are obvious candidates for many communication 

problems; phase transitions are apparent).  It is useful to 

consider whether the class of the complexity may be al-

gorithmic, deterministic or aggregate.  It is also possible 

that a yet-to-be-discovered organizing mechanism is at 

work in communication.  How are components in the 

system are inf luencing each other?  

Specify the system.  

A dynamic system is typically defined by three ele-

ments: 1) the state, 2) a transition function, and 3) the 

state-space (Fuchs, 2013; Luenberger, 1979; Strogatz, 

1994).  The system’s state is the composition of that system 

at any single point in time and its ambiance, or surround-

ing environment (Chu, Strand & Fjelland, 2003).  One 

useful way to model a system is Bunge’s (2004) CESM 

model of system structure: components, environment, 

structure and mechanism. What are the components 

needed to create the system’s organization?  How are those 

elements structured relative to each other?  Do the ele-

ments interact with the environment in the process of 

organizing and in what ways?  What is the mechanism 

by which the components interact with the environment 

to realize the system organization? For example, let’s say 

we are studying the dynamics of the diffusion of a new 

technology in a small town.  In this case, the components 

could consist of the members of a social system (potential 
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trust), macro-level behavior (e.g., voting, migration, pub-

lic opinion), artificial life, and political science (for more 

examples, see Miller & Page, 2009).  Some simulations 

are studied specifically to determine the extent to which 

computers can approximate real-life behavior.  For ex-

ample, one type of simulation, called cellular automata, 

are used to study emergence.  In 1970, mathematician 

John Horton Conway created the Game of Life, a cellular 

automata in which a two-dimensional grid consisting of 

x by x cells are populated by binary agents (black or white) 

in various patterns (see Figure 2). All cells follow a set of 

four rules to determine their next state as the program 

iterates.  Any live cell (black) that has three live neighbors 

dies (turns white), while any dead cells (white) become 

live if they have three live neighbors.  The simulation 

iterates in real time, creating emergent patterns based on 

very simple rules (Conway’s program Golly can be down-

loaded at: http://www.dmoz.org/Computers/Artificial_

Life/Cellular_Automata/Conway’s_Game_of_Life). 

A wide variety of social behavior has been studied 

using agent-based models (ABMs; Holland, 1995; Miller 

& Page, 2009).  ABMs are a class of computer simulations 

in which autonomous virtual ‘agents’ interact with one 

another guided by a set of simple rules that are iterated 

in time steps. These simulations provide observable evi-

dence for how iterating a simple set of rules can result in 

robust and complex-appearing behavior. Researchers 

specify the rules by which the agents interact and the 

number of agents; the program randomly seeds the world’s 

population of agents.  Parameters of each rule can be 

manipulated to test for variations in emergent social world 

behavior.  Open source computer programs such as Net-

Logo (http://ccl.northwestern.edu/netlogo/) or Swarm 

(http://www.swarm.org/) allow researchers to program 

and run simulations of social behavior under varying 

parameters to uncover underlying interaction dynamics.  

This approach is best suited for examination of the dy-

namics by which people interact under assumptions of 

simple rules such as cooperation, diffusion, traffic pat-

terns, and prisoner’s dilemma.  More complex speech 

interaction would be difficult to model under such simple 

assumptions.

While we often think of simulations as computer pro-

grams, they can also be performed in a lab (e.g., f luid 

dynamics simulations) or in situ (e.g., Gordon’s ant stud-

ies) (Gilbert & Troitzsch, 2004; Richards, 1980).  The 

Formalize and test the system.  

When the system and the mechanism have been de-

fined, it is time to test the system.  The goal is to determine 

whether the defined system recreates the types of behav-

ior seen in the real world.  For our diffusion problem, we 

would need to begin with some reasonable initial condi-

tions (starting values) for the presence of the new technol-

ogy and some parameters for adoption behavior of indi-

viduals and network inf luence.  We can plot our starting 

position, referred to as Time 0 or t
0
.  Next, we apply the 

equation (mechanism) to calculate values for adoption at 

the next step (time t + 1 or t1).  The equation can then be 

applied to values calculated at t1 to determine adoption 

values at t2…. tx .  The values that result from each ap-

plication of the equation are plotted on a phase plot al-

lowing observation of the behavior of the defined system 

over time.  Behavior of the defined system can be compared 

to behavior of a real world system to determine whether 

the modeled system is recreating the behavior observed 

in the real world system.  If this is the case, it can be ar-

gued that the modeled system is a valid process by which 

the real world behavior can be realized.  The argument 

for the validity of the simulation must be supported by 

the same validity criteria used in any other empirical 

scientific research (i.e., Cook & Campbell, 1979). 

There are two common types of computer simulations: 

equation-based and agent-based. Of the two, equation-

based simulations were first and have been used in most 

sciences (Winsberg, 2013).  Equation-based simulations 

iterate well-known equations (e.g., third law of motion) 

as the rule/algorithm to define change in the system state.  

These simulations can be used to generate analytic point 

solutions for a specific engineering application (e.g., de-

termine the required tensile strength for suspension springs 

on a car) or can be used to generate geometric solutions 

to more complex systems (e.g., weather prediction).  They 

allow scientists and engineers to perform computation-

ally intensive calculations that were not practical before 

the advent of computers.

A second class of simulations, agent-based, were de-

veloped in the 1970s to study systems that are not neces-

sarily driven by clear variable laws (Miller & Page, 2009).  

Agent-based simulations are typically used in the social, 

cognitive and behavioral sciences to study such topics as 

animal populations, micro-economics (e.g., altruism, 
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lies in the nature of what is observed.  In traditional vari-

ance approaches to communication research, we test the 

extent to which the interaction of a small number of 

variables results in a solution predicted by a theory.  The 

relationship is stated as the hypothesis: if theory X is 

correct, we will observe the following relationship between 

variable A and variable B post manipulation.  The theory 

is considered supported as long as there is a relationship 

between the variables in the predicted direction that is 

not attributable to chance.  In the vast majority of cases, 

the relationship is a snapshot of a static moment.  

In the case of organized complexity research and sim-

ulation, we test the behavior of the theory over time, 

rather than a static moment predicted by the theory.  

Therefore, the question is whether the behavior of the 

system is consistent with the behavior of the real world 

system and not simply attributable to chance.  As a result, 

there are a number of potential measures of fit, as articu-

lated by Cyert (1966):

1. number of turning points,

2. timing of turning points,

3. direction of turning points,

4. amplitude of the f luctuations for corresponding time 

segments,

5. average amplitude over the whole series,

6. simultaneity of turning points for different variables,

so-called ‘telephone game’ that is often played in intro-

ductory communication classes is a simulation of real 

world message degradation.  In this game, a message is 

given to a student and then passed through all remaining 

students in the class.  Most often, the message that the 

last student receives is quite different from the initial 

message.  Lab or in situ studies of human communication 

are difficult, but possible.  The biggest difficulty is con-

trolling parameters of the model (e.g., speaker intelligence, 

motivation).  Greater control over system behavior is 

possible with computer simulation.  In general, a com-

puter simulation is “a program that is run on a computer 

and that uses step-by-step methods to explore the ap-

proximate behavior of a mathematical model.” (Winsberg, 

2013, p. 1.1)  The parameters of the initial system state 

are input into the computer, along with the rules/algo-

rithms defining how the system changes over time, and 

the computer repeatedly applies the rule to the data to 

produce a picture of the time evolution of the system.  

Verify and modify the system.  

Verification of a simulation adheres to the same gen-

eral principles as other types of empirical research in that 

it attempts to determine the extent to which the proposed 

model is isomorphic with reality. The primary difference 

Figure 2. Screen grab of Conway’s Game of Life program Golly. Downloaded from http://golly.sourceforge.net/
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fication is an iterative one in which breakdowns in the 

simulation trigger reassessment and modification of the 

system model.  

Use of the simulation.  

The successful completion of a simulation that is iso-

morphic with real-world systems represents both an ac-

complishment and an opportunity.  The accomplishment 

is that the mechanisms that lead to real-world behavior 

are known at a very specific level.  Rather than testing a 

hypothesized result arising from a theory, the simulation 

is an explanatory model that explains the manner by 

which the entire system creates the behavior of interest.  

In addition, the simulation also provides the opportunity 

to test the model under a vast combination of conditions 

that would be very difficult to observe in the real world. 

The model can be tested to determine failure points or 

points of transition to new qualitative behavior (Winsberg, 

2013).  For example, the percentage of innovators in a 

community can be varied to see how the adoption curve 

is effected.  Alternatively, the level of uncertainty in the 

community can be adjusted up or down to see how un-

certainty effects the speed of adoption.  Because organized 

complexity problems are often nonlinear, these parameter 

adjustments may have unexpected qualitative outcomes 

(e.g., phase transition, a threshold, catastrophe).  

Simulation scientists test, verify and experiment on 

systems by running the simulation hundreds of times 

under the same set of parameters.  The behavior of non-

linear systems will remain consistent even though the 

end-point of the simulation will result in different values.  

By running the simulation many times, scientists are able 

to observe the range of possible outcomes of the system 

in addition to the general dynamics of the process.  Oc-

casionally, a highly unusual outcome will be generated, 

triggering the scientist to inspect what happened on that 

run and why the anomalous outcome resulted.

The Way Forward for Complexity 
and Communication

The opportunities for new scientific communication 

discovery made possible with the complexity paradigm 

are both accelerating and formidable. Studying commu-

7. average values of variables,

8. exact matching of values of variables.

There are a number of ‘goodness-of-fit’ statistics pro-

posed to test whether the values of the simulation are 

significantly different from real-world values including: 

ANOVA, chi-square, Kolmogorov-Smirnov test, factor 

analysis, some non-parametric tests, regression analysis 

and spectral analysis (Naylor & Finger, 1967).  Values 

generated by the simulation can be compared to data on 

system behavior under similar conditions/parameters.  

These data can be collected by the research on real-world 

system behavior or can be generated from historical records 

of system behavior (e.g., economic data).

In practice, the validity of simulations is verified both 

via formal statistical tests and by more visual geometric 

observation.  Whereas a formal statistical test may be 

incisive for the measures laid out by Cyert (1966), statis-

tics do not allow for an assessment of more complex dy-

namic patterns that are apparent by visual inspection.  

For example, does the simulation of turbulent and lami-

nar f luid f low look like real world turbulent and laminar 

f low?  Does a simulation of traffic patterns behave like 

real world traffic patterns behave?  This type of qualitative 

analysis remains important because the human brain is 

still the most powerful tool for assessing dynamic patterns, 

as long as care is taken that the brain is not systemati-

cally fooled.  In addition, like other forms of empirical 

research, models can be subject to tests of face validity 

by experts in the phenomenon and can be subject to in-

spection of internal validity by testing the extent to which 

repeated runs of the simulation are consistent with one 

another.

Simulations can also be tested by attempting to repli-

cate well know unique system behavior (Sargent, 2012).  

For example, simulations can be run under the assump-

tions of an extreme condition or well known event.  In 

these cases, the output of the real-world system is known 

(e.g., catastrophic breakdown), and the simulation should 

replicate this behavior.  Does the simulation boil at 100 °K?  

Does the automotive supply chain break down when steel 

becomes rare?  Simulations can also output graphics 

representing the occurrence of particular events, such as 

the number of times the system takes one path versus 

another.  Simulation graphs can be compared to graphs 

of real system behavior.  In all cases, the process of veri-
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to individual differences in people’s ability to organize 

social reality to their own ends.   Those who are cogni-

tively complex are better able to organize social experience 

to their own advantage and desires than those who are 

less cognitively complex.  In this same vein, adaptive 

structuration theory (Poole & DeSanctis, 1990) argues 

that group decisions are a function of how people organize 

the process via use of rules and resources in interaction.  

In this case, both the experience of a particular group and 

the outcome of that group’s work is organized through 

communication.  Focusing on a different organizing 

mechanism for communication, communication accom-

modation theory (Giles et al. 1991) conceives of intercul-

tural communication as a process of convergence and 

divergence that creates understanding between people 

from diverse groups.  Whatever understanding results is 

a function of how the communication organization occurs 

and how the individuals in the conversation organize 

relatively to one another (converge or diverge).  

Relational interpersonal communication also has a 

number of perspectives that imply organized complexity 

in communication.  Relational dialectics (Baxter & Mont-

gomery, 1996) argues that communication in close rela-

tionships consists of the interplay of oppositional differ-

ences.  The ongoing process by which oppositional tensions 

are negotiated and modified organize the experience of 

the relationship.  Burgoon et al. (1995) reviewed an ex-

tensive literature on behavior in dyadic communication 

and found a set of commonalities that they used to derive 

their interaction adaptation theory.  The review and the-

ory focused on the different ways that interaction is or-

ganized over time, including convergence, entrainment, 

and divergence. The patterns they found in the literature 

could readily be used to envision a powerful organized 

complexity process of interaction based on existing em-

pirical research.  Scholars who are looking for ideas to 

study communication processes would be well advised to 

return to the existing interpersonal literature.  Though 

the studies and theories are mostly linear and simple, the 

core ideas are a rich source for ideas for a complexity 

approach.

The future will be difficult

Complexity research requires a level of precision that 

is not the norm in the field of communication.  This will 

nication as organized complexity phenomenon opens the 

opportunity to examine important processes of commu-

nication that have gone unstudied.  However, the com-

plexity approach is neither a panacea for answering all 

communication questions or an easy way forward.  Salem 

(2012) points out a number of fundamental theoretical 

obstacles to studying communication within a complex-

ity paradigm. First, complexity approaches will shift the 

questions we ask from those of structure and sequence to 

questions of process.  Rather than asking how a bird’s 

wing is attached to its body (ball and socket structure), 

we will need to ask how it is that the joint gives rise to 

and maintains f light.  This can only be understood by 

looking at how the range of motion afforded by the joint 

interacts with airf low, the bird’s body and the airfoil shape 

of the wing to create and maintain lift.  The system can 

only be understood as a group of simultaneous interac-

tions.  Second, Salem (2012) argues that communication 

theorists will need to come to grips with a concept that 

they have resisted: emergence.  For a group that has fo-

cused on reductionism since the early studies of Hovland 

and McGuire, emergence is anathema.  Like complexity, 

emergence is an imprecisely defined idea.  Finally, Salem 

(2012) argues that embracing complexity means abandon-

ing the simple theoretic representations of boxes and 

arrows for models that move. Additionally, journals and 

textbooks will need to accommodate theories presented 

as dynamic and/or interactive systems.

There are at least three more challenges that we will 

need to be aware of as we move forward.  These chal-

lenges will make us think about how to integrate our 

prior static research in new dynamic theories, how to 

avoid trivializing the complexity we wish to understand, 

and overcoming institutional bottlenecks of expanding 

our intellectual repertoire.   

Don’t forget the past

Interestingly, we have a rich tradition of ideas that 

lend themselves to the complexity science paradigm.  

Pearce and Cronen’s (1980) coordinated management of 

meaning claims that persons-in-conversation co-construct 

their social reality by the ways they respond to each 

other via communication.  In other words, people use 

communication to organize social experience.  Similarly, 

constructivism (Delia, O’Keefe & O’Keefe, 1982) speaks 
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programs pales in comparison to the difficulties of pub-

lishing this type of work in communication journals.  How 

many scholars in our field understand the subtleties of 

computational modeling in adequate detail to be able to 

offer a fair and reasoned critique of a manuscript?  If 

editors go outside for reviewers, the assessments run the 

risk of losing sight of communication assumptions that 

are informing the way the simulations are built.  What 

about demands for statistical independence that underlie 

the tradition of null hypothesis significance testing?  Com-

plex models are highly dependent, just like the natural 

world that they attempt to explain.  I have already run 

into difficulties with well-intentioned reviewers and edi-

tors that insist on traditional linear statistics as a basic 

criterion for publication.  How will these reviewers deal 

with bizarre, but valid concepts like deterministic systems 

that lack predictability?  My guess is that we will need to 

wait for current graduate students who have engaged these 

ideas to mature into reviewing roles, at least in our jour-

nals.  We can take consolation in the fact that this type 

of work is frequently published in journals like Science, 

Nature, and PNAS.

Final thoughts

History has shown that paradigms shift very slowly.  

There is tremendous inertia around established ways of 

doing things and scientists are (correctly) cautious about 

new ideas.  The main thrust for embracing complexity 

will come from graduate students who are increasingly 

exposed to these ideas in their outside coursework and 

who have time and energy to do the tremendous work to 

learn a new paradigm.  These graduate students will in-

creasingly work with teams from a broad array of disci-

plines that are already knowledgeable about complexity.  

Breakthrough articles will most likely not be published 

in communication journals, but will find an initial audi-

ence in areas that have already shifted to complexity.  

This is because the ideas will be too different for review-

ers in our field to embrace.  However, the interdisciplin-

ary moments created by working with scholars from 

other fields, producing basic scientific discovery of the 

processes underlying human communication, and publish-

ing those breakthroughs in broader-based journals will 

draw more credibility to our small field.  Perhaps Hoffman 

not only affect how we think about our models, but also 

how we present them and read our literature.  For ex-

ample, it can take longer to read a five-page mathematical 

article than a 25-page communication article.  As preci-

sion increases, the text tends to become denser and sym-

bol systems (i.e., equations) are required to articulate 

relationships precisely.  The transition function that rep-

resents the theoretical core mechanism of the system must 

be stated with great clarity, typically as either a set of 

differential equations or as a specific set of rules by with 

the system changes.  Programming a simulation requires 

highly logical and unambiguous rule statements so that 

the program does not crash.  These programs can be re-

quired as part of a manuscript submission, meaning that 

reviewers can readily run the simulation to test the results 

to check the extent to which the article accurately describes 

the proposed mechanism.  Additionally, authors and re-

viewers will need to be sure that the computational mod-

el maps onto the theorized model as asserted.

The two bottlenecks

The greatest bottlenecks in any disciplinary system 

occur at the two most important components: graduate 

training and editorial review.  It will be quite difficult to 

instantiate a new paradigm at the graduate school level 

because to do so requires the teaching of both the new 

paradigm and the traditional one.  A graduate student 

can hardly be considered an expert in the field without a 

strong background in the past 60 years of communication 

research, including the epistemology that informs that 

research.  Most leading programs require a core set of 

courses on traditional theory and methodology.  How-

ever, traditional theory and methodology is limited to 

problems of simplicity and disorganized complexity.  Ex-

tending the core to include organized complexity would 

require additional coursework on current systems think-

ing, nonlinear mathematics, and the use of computa-

tional modeling, including basic computer programming.  

Do we extend the time to Ph.D. or drop other important 

content?  And who teaches these classes if they are not 

already a part of the discipline?  The most logical course 

for most programs will be to leave their programs as is 

and allowing students to learn complexity in their lim-

ited external coursework.

The difficulties of adopting complexity in graduate 
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